Depreciación en linea recta,depreciación por suma de digitos, depreciación por saldo decreciente
Depreciación en linea recta
Cuando hablamos de depreciación, nos referimos a la reducción en el valor de un activo. Los modelos de depreciación utilizan reglas, tasas y fórmulas aprobadas por el gobierno para representar el valor actual en los libros de la Compañía.
El modelo en línea recta es un método de depreciación utilizado como el estándar de comparación para la mayoría de los demás métodos. Obtiene su nombre del hecho de que el valor en libros se reduce linealmente en el tiempo puesto que la tasa de depreciación es la misma cada año, es 1 sobre el periodo de recuperación. Por consiguiente, d = 1 / n. La depreciación anual se determina multiplicando el costo inicial menos el valor de salvamento estimado por la tasa de depreciación d, que equivale a dividir por el periodo de recuperación n. En forma de ecuación queda de la siguiente manera:
Dt = (B - VS) / d = (B - VS) / n
Donde: t = año (1, 2, … n)
Dt = cargo anual de depreciación
B = costo inicial o base no ajustada
VS = valor de salvamento estimado
d = tasa de depreciación (igual para todos los años)
n = periodo de recuperación o vida depreciable esperada
Dado a que el activo se deprecia por la misma cuantía cada año, el valor en libros después de t años de servicio, VLt, será igual a la base no ajustada B menos la depreciación anual, multiplicado por t.
dt = 1 / n.
Ejemplo: Si un activo tiene un costo inicial de $50000 con un valor de salvamento estimado de $10000 después de 5 años, (a) calcule la depreciación anual y (b) calcule el valor en libros después de cada año, utilizando el método de depreciación en línea recta.
(a) La depreciación para cada año puede obtenerse mediante la ecuación:
Dt = (B - VS) / n = (50000 - 10000) / 5 = $8000 cada año.
(b) El valor en libros después de cada año t se calcula mediante la ecuación
VLt = V - tDt
VL1 = 50000 - 1*8000 = 42000
VL2 = 50000 - 2*8000 = 34000
VL3 = 50000 - 3*8000 = 26000
VL4 = 50000 - 4*8000 = 18000
VL5 = 50000 - 5*8000 = 10000 = VS
Dt = (B - VS) / d = (B - VS) / n
Donde: t = año (1, 2, … n)
Dt = cargo anual de depreciación
B = costo inicial o base no ajustada
VS = valor de salvamento estimado
d = tasa de depreciación (igual para todos los años)
n = periodo de recuperación o vida depreciable esperada
Dado a que el activo se deprecia por la misma cuantía cada año, el valor en libros después de t años de servicio, VLt, será igual a la base no ajustada B menos la depreciación anual, multiplicado por t.
dt = 1 / n.
Ejemplo: Si un activo tiene un costo inicial de $50000 con un valor de salvamento estimado de $10000 después de 5 años, (a) calcule la depreciación anual y (b) calcule el valor en libros después de cada año, utilizando el método de depreciación en línea recta.
(a) La depreciación para cada año puede obtenerse mediante la ecuación:
Dt = (B - VS) / n = (50000 - 10000) / 5 = $8000 cada año.
(b) El valor en libros después de cada año t se calcula mediante la ecuación
VLt = V - tDt
VL1 = 50000 - 1*8000 = 42000
VL2 = 50000 - 2*8000 = 34000
VL3 = 50000 - 3*8000 = 26000
VL4 = 50000 - 4*8000 = 18000
VL5 = 50000 - 5*8000 = 10000 = VS
Depreciación por el método de la suma de los dígitos de los años.
El método suma de los dígitos de los años (SDA) es una técnica clásica de depreciación acelerada que elimina gran parte de la base durante el primer tercio del periodo de recuperación. Esta técnica puede ser puede ser utilizada en los análisis de ingeniería económica, especialmente en las cuentas de depreciación de activos múltiples.
La mecánica del método comprende inicialmente encontrar S, la suma de los dígitos del total de años de 1 hasta el periodo de recuperación n. El cargo de depreciación para cualquier año dado se obtiene multiplicando la base del activo menos cualquier valor de salvamento (B - VS) por la razón del número de años restantes en el periodo de recuperación sobre la suma de los dígitos de total de años, S.
Dt = (años depreciables restantes / suma de los dígitos del total de años) (base - valor de salvamento) = (n - t + 1)/S (B - VS)
Donde S es la suma de los dígitos del total de años 1 hasta n.
S = "j = (n(n + 1))/2
El valor en libros para un año t se calcula como:
VLt = B - (t(n - t/2 + 0.5)/S) (B - VS)
La tasa de depreciación dt, que disminuye cada año para el método SDA, sigue el multiplicador en la ecuación:
dt = n - t + 1 / S
La mecánica del método comprende inicialmente encontrar S, la suma de los dígitos del total de años de 1 hasta el periodo de recuperación n. El cargo de depreciación para cualquier año dado se obtiene multiplicando la base del activo menos cualquier valor de salvamento (B - VS) por la razón del número de años restantes en el periodo de recuperación sobre la suma de los dígitos de total de años, S.
Dt = (años depreciables restantes / suma de los dígitos del total de años) (base - valor de salvamento) = (n - t + 1)/S (B - VS)
Donde S es la suma de los dígitos del total de años 1 hasta n.
S = "j = (n(n + 1))/2
El valor en libros para un año t se calcula como:
VLt = B - (t(n - t/2 + 0.5)/S) (B - VS)
La tasa de depreciación dt, que disminuye cada año para el método SDA, sigue el multiplicador en la ecuación:
dt = n - t + 1 / S
Depreciación por el método de la suma de los dígitos de los años.
El método del saldo decreciente, conocido también como el método de porcentaje uniforme o fijo, es un modelo de cancelación acelerada. En términos simples, el cargo de depreciación anual se determina multiplicando el valor en libros al principio de cada año por un porcentaje uniforme, que se llamará d, en forma decimal equivalente. Por ejemplo, si la tasa de porcentaje uniforme es del 10% (es decir d = 0.10), la cancelación de depreciación para cualquier año dado será 10% del valor en libros al principio de ese año. El cargo de depreciación es más alto durante el primer año y disminuye para cada año que sucede.
El porcentaje de depreciación máximo permitido es el doble de la tasa en línea recta. Cuando se utiliza esta tasa, el método se conoce como saldo decreciente doble (SDD). Por tanto, si un activo tuviera una vida útil de 10 años, la tasa de recuperación en línea recta sería 1/n = 1/10 y la tasa uniforme para SDD sería d = 2/10 ó 20% del valor en libros. dmax = 2 / n
Ésta es la tasa utilizada para el método SDD. Otro porcentaje comúnmente utilizado para el método SD es 150% de la tasa en línea recta, donde d = 1.50/n.
La tasa de depreciación real para cada año t, relativa al costo inicial es:
dt = d(1 - d)t - 1
Para la depreciación SD o SDD, el valor de salvamento estimado no se resta del costo inicial al calcular el cargo de depreciación anual. Es importante recordar esta característica de los modelos SD y SDD.
Aunque los valores de salvamento no se consideran en los cálculos del modelo SD, ningún activo puede depreciarse por debajo de un valor de salvamento razonable, que puede ser cero. Si el valor en libros alcanza el valor de salvamento estimado antes del año n, no se puede efectuar ninguna depreciación adicional.
La depreciación para el año t, Dt, es la tasa uniforme, d, multiplicada por el valor en libros el final del año anterior. Dt = (d)VLt-1
Si el valor VLt-1 no se conoce, el cargo de depreciación puede calcularse como:
Dt = (d)B(1-d)t -1
Ésta es la tasa utilizada para el método SDD. Otro porcentaje comúnmente utilizado para el método SD es 150% de la tasa en línea recta, donde d = 1.50/n.
La tasa de depreciación real para cada año t, relativa al costo inicial es:
dt = d(1 - d)t - 1
Para la depreciación SD o SDD, el valor de salvamento estimado no se resta del costo inicial al calcular el cargo de depreciación anual. Es importante recordar esta característica de los modelos SD y SDD.
Aunque los valores de salvamento no se consideran en los cálculos del modelo SD, ningún activo puede depreciarse por debajo de un valor de salvamento razonable, que puede ser cero. Si el valor en libros alcanza el valor de salvamento estimado antes del año n, no se puede efectuar ninguna depreciación adicional.
La depreciación para el año t, Dt, es la tasa uniforme, d, multiplicada por el valor en libros el final del año anterior. Dt = (d)VLt-1
Si el valor VLt-1 no se conoce, el cargo de depreciación puede calcularse como:
Dt = (d)B(1-d)t -1
BLOGGER COMPLETO
ResponderBorrar